Comparison of Implicit Multigrid Schemes forThree-Dimensional Incompressible Flows

نویسنده

  • Li Yuan
چکیده

To develop a robust and efficient computational flow simulation tool for incompressible flow applications, a number of different implicit multigrid schemes for solving the three-dimensional incompressible Navier–Stokes equations are compared in the current study. These schemes consist of a common full approximation storage (FAS) multigrid algorithm implemented in conjunction with three different implicit schemes, which include a modified point Gauss relaxation, a standard Gauss–Seidel line relaxation, and the Beam–Warming alternating direction implicit (ADI) scheme. The flow solver used in the study is based on artificial compressibility and uses a third-order upwind difference for the convective terms and a second-order central difference for the viscous terms. The efficiency of each implicit multigrid scheme is assessed in terms of the computing time required for two laminar flow problems: the entry flow through a 90◦ bent square duct, and the steady-state and unsteady flows past a prolate spheroid at incidence with an axis ratio of 4 : 1. It is found that implementation of Neumann boundary conditions on the coarse grid in terms of the flow variable correction rather than the flow variable itself is essential for obtaining good convergence in the collocated finite difference discretization. The results of steady-state flow computations show that all the implicit multigrid schemes yield more than 50% computational time savings over their single grid counterparts, and the point or line relaxation multigrid scheme outperforms the ADI multigrid scheme by at least a factor of 2. However, in unsteady flow computations, the computational time saving of the multigrid scheme is less than that in steady-state cases. The current study concludes that the FAS multigrid algorithm implemented with the modified point Gauss relaxation scheme is preferable for simulating both steady-state and time-dependent incompressible flows. c © 2002 Elsevier Science (USA)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

A p-multigrid spectral difference method for two-dimensional unsteady incompressible Navier–Stokes equations

This paper presents the development of a 2D high-order solver with spectral difference method for unsteady incompressible Navier–Stokes equations accelerated by a p-multigrid method. This solver is designed for unstructured quadrilateral elements. Time-marching methods cannot be applied directly to incompressible flows because the governing equations are not hyperbolic. An artificial compressib...

متن کامل

Fast Solvers and Efficient Numerical Cfd Techniques for Dynamic Porous Media Problems

Abstract. We present a fully implicit, monolithic finite element solution scheme to efficiently solve the governing set of differential algebraic equations of incompressible poroelastodynamics. Thereby, we proceed from a two-dimensional, biphasic, saturated porous medium model with intrinsically coupled and incompressible solid and fluid constituents. Our approach, motivated by well-accepted CF...

متن کامل

Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter

In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...

متن کامل

Three-dimensional unsteady incompressible flow computations using multigrid

We apply a robust and computationally efficient multigrid-driven algorithm for the simulation of time-dependent three-dimensional incompressible bluff body wakes at low Reynolds numbers (Re less than or equal to 350). The computational algorithm combines a generalized time-accurate artificial compressibility approach, a finite-volume discretization in space, and an implicit backward discretizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002